VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD B.E. (CSE: CBCS) VI-Semester Main \& Backlog Examinations, May-2019

 Compiler Construction

 Compiler Construction}

Time: $\mathbf{3}$ hours
Max. Marks: 70
Note: Answer ALL questions in Part-A and any FIVE questions from Part-B

Q. No	Stem of the Question	M	L	CO	PO
Part-A (10 $\times 2=20 \mathrm{Marks}$)					
1.	What is the difference between lexeme, token and pattern?	2	2	1	1,2
2.	Write the regular expression have all strings of 0 's and 1 's with no two consecutive 0 's.	2	3	1	2
3.	Differentiate between top down and bottom up parsing strategies.	2	2	2	1,2
4.	Check whether the given grammar is ambiguous or not? $S->S+S\|S * S\| \text { id }$	2	3	2	1,2
5.	List the types of three address statements.	2	2	3	1
6.	Translate $\mathrm{a}+$-(b+c) into quadruples.	2	3	3	1,2
7.	What are the functions of heap memory manager?	2	2	4	1
8.	Find the starting memory location of int a[3][4] where base address $=0$ and size of integer=4	2	2	4	1
9.	What is DAG? Write down its advantages.	2	2	5	1,2
$10 .$	What is code motion? Apply code motion for the given code snippet While(i<=limit-2) \{/llimit value is not changing \} $\text { Part-B }(5 \times 10=50 \text { Marks })$	2	3	5	1,2
11.a)	Explain the phases of compilation with the following example. Position=initial + rate*60	6	2	1	1
b)	Construct transition diagram for unsigned numbers.	4	3	1	1,2
12.a)	Consider the following grammar. $\begin{aligned} & S->\mathrm{Xa} \\ & \mathrm{X}->\mathrm{aXb} \mid \mathrm{a} \end{aligned}$ Check whether the given grammar is CLR or not?	4	3	2	1,2
b)	Consider the grammar : $S \rightarrow a A d\|b B d\| a B c \mid b A c$ Construct LALR(1) parsing table for this grammar.	6	2	2	1,2
13.a)	Write three address code ,triple and indirect triple for the given expression. $\left(a^{*} b\right)+(c+d)-(a+b+c+d)$	4	2	3	1
b)	Construct a Syntax-Directed Translation scheme that translates arithmetic expressions from infix notation into postfix notation. You should write the context-free grammar, the semantic attributes for each of the grammar symbols, and corresponding semantic rules. Explain the scheme with the given input " $4 * 5+7 * 2-2 * 1$ ".	6	3	3	1,2

14.a) Explain the usage activation record in stack allocation strategy. How it is different from heap allocation?
b) For the given code snippet to compute fibonacci numbers recursively:
int $f(\operatorname{int} n)\{$
int t, n;
if $(\mathrm{n}<2)$ return 1 ;
$\mathrm{s}=\mathrm{f}(\mathrm{n}-1)$;
$\mathrm{t}=\mathrm{f}(\mathrm{n}-2)$;
return $\mathrm{s}+\mathrm{t}$;
\}
Suppose activation record of ' f ' includes (return value, argument n, local s, local t); other variables may possible. If the initial call is $f(5)$.
i) Show the complete activation record.
ii) Show the stack and its activation records at the instance when the first $f(1)$ call is about to return.
15.a) What is peephole optimization? Explain peephole optimization techniques with suitable examples.
b) Construct the DAG for the basic block:

$$
\begin{aligned}
& d:=b^{*} c \\
& e=a+b \\
& x:=b^{*} c \\
& a:=e-d
\end{aligned}
$$

16.a) Describe different language processors.
b) Explain the rules to remove left recursion. Remove the left recursion in the following grammar.

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{Aa} \mid \mathrm{b} \\
& \mathrm{~A} \rightarrow \mathrm{Ac}|\mathrm{Sd}| \mathrm{b}
\end{aligned}
$$

17. Answer any two of the following:
a) Construct syntax directed definition to build annotated parse tree for the expression $(3+4)^{*}(5+6)$ using expression grammar.
b) Find first and follow for the given grammar.
$\mathrm{E} \rightarrow \mathrm{E}+\mathrm{T} / \mathrm{T}$
$\mathrm{T} \rightarrow \mathrm{T} * \mathrm{~F} / \mathrm{F}$
$\mathrm{F} \rightarrow(\mathrm{E}) / \mathrm{id}$
c) Describe machine independent optimization techniques with suitable examples.

M: Marks; L: Bloom's Taxonomy Level; CO: Course Outcome; PO: Programme Outcome

S. No.	Criteria for questions	Percentage
1	Fundamental knowledge (Level-1 \& 2)	60
2	Knowledge on application and analysis (Level-3 \& 4)	40
3	*Critical thinking and ability to design (Level-5 \& 6) (*wherever applicable)	-

